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A formal expansion method for analysis of the non-linear development of an 
oblique wave in a parallel flow is presented. The present approach constitutes an 
extension and modification of the method of Stuart and Watson. Results are 
obtained for plane Poiseuille flow, and for a combination of plane Poiseuille and 
plane Couette flow. The Poiseuille flow exhibits finite-amplitude subcritical 
instability, and relatively weak but finite disturbances markedly reduce the 
critical Reynolds number. The combined flow, which becomes stable to infini- 
tesimal disturbances at all Reynolds numbers when the Couette component is 
sufficiently great, remains unstable to finite disturbances. 

1. Introduction 
Two important questions arise in the consideration of non-linear aspects in 

hydrodynamic stability theory for parallel flows. The first, which prompted the 
present work, is whether or not a flow which is stable to infinitesimal disturbances 
might be unstable to disturbances of some finite amplitude. This is particularly 
important in the case of plane Couette flow, which appears to be stable to infini- 
tesimal disturbances a t  all the Reynolds numbers. Secondly, one can seek the 
nature of the finite-amplitude equilibrium flow which develops as a result of an 
initial instability. The means for answering these questions are due primarily to 
the work of J. T. Stuart and his associates; the central physical aspects have been 
summarized by Stuart (1960b), and the key mathematical ideas given by Stuart 
(1960a) and Watson (1960, 1962). 

The non-linear analyses centre about an equation for the amplitude of the 
velocity disturbance of the form 

d A / d t  = a(O)A + a(2)A3 + . . . . (1 .1)  

A classical linearized stability analysis yields the constant do) as an eigenvalue 
of the Orr-Sommerfeld problem.? The aim of the non-linear theory is to deter- 
mine the remaining &, and particularly a@). If do) < 0 the flow is stable to small 
disturbances, but the question remains as to whether disturbances of sufficient 
amplitude might produce ' subcritical ' instability. This would be reflected by the 
contribution of the higher-order terms outweighing the do) term. In  contrast, if 

t d o )  = mi, where c is the eigenvalue of linearized stability theory (Lin 1955). 
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a(O) > 0 the flow is unstable to small disturbances; but it is possible that the higher- 
order terms may balance the leading term, and a finite-amplitude supercritical 
equilibrium flow can thereby be obtained. In  the special case a(O) = 0, correspond- 
ing to the neutral stability curve of linearized theory, the sign of d2) determines 
whether the disturbances actually grow or decay. The general behaviour of the 
amplitude, as given by an equation of the type (l.l), can be conveniently repre- 
sented in the phase plane (figure 1). 

dAldt d A  jdt 

Subcritical instability Supercritical equilibrium 

FIGURE 1. The amplitude phase plane. 

Perhaps the most well-known case of a supercritical equilibrium flow is the 
Taylor vortex flow between rotating cylinders. In  fact, several modes of super- 
critical equilibrium are known (Coles 1965). Davey (1962) calculated a@) for this 
case, using an extension of Stuart’s (19604 formalism, and obtained remarkably 
good agreement with experimentally measured torques in the range of the first 
supercritical equilibrium flow. DiPrima & Stuart (1964) have further extended 
the ideas to treat the instability of the first supercritical equilibrium flow. Coles 
(1965) has shown experimentally how turbulent flow is eventually obtained 
following a complex spectral evolution. Thus, a great deal is now known about 
the nature of the non-linear interactions in rotating Couette flow, and the 
methods of analysis proposed by Stuart have shown their value. 

The initial instability in the rotating case is due primarily to centrifugal effects. 
In contrast, the initial instability in plane Poiseuille flow is due to rather subtle 
viscous effects (Lin 1955). Moreover, there has been no experimental evidence 
suggesting the existence of any supercritical equilibrium flows for this case, and 
the initial instability seems to lead catastrophically to turbulence. Furthermore, 
there is some evidence that subcritical instabilities exist in this type of parallel 
shear flow (Meksyn & Stuart 1951; Davies & White 1928). Hence i t  is likely that 
d2) is positive for plane Poiseuille flow, at least in the region of the critical Rey- 
nolds number. However, an approximate integral method treatment of the non- 
linear problem by Stuart (1958) gave a conflicting result; a@) was found to be 
negative, indicating the existence of supercritical equilibrium states, and no sub- 
critical instabilities. Stuart’s (1960a) work on the expansion method was moti- 
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vated largely by a desire to resolve this controversy, and for the present paper 
the required numerical work has been completed. 

A third flow of concern is plane Couette flow, which is believed to be stable to 
infinitesimal disturbances a t  all the Reynolds numbers. It is likely that finite- 
amplitude disturbances in this flow may grow, but as yet this question remains 
unanswered. Certain aspects of the Stuart-Watson expansion formalism require 
modification for treatment of flows which are highly stable to small disturbances, 
and it was primarily the desire to examine a special case of the plane Couette 
flow problem that prompted the present work on the expansion method. The 
numerical work associated with this case will be described in a subsequent paper. 

In  the problem mentioned above, three-dimensional finite amplitude instabili- 
ties were of particular interest. While the initial Stuart-Watson approach was 
developed only for two-dimensional disturbances, in a subsequent paper Stuart 
(1961) considered the interaction of a two-dimensional disturbance with a par- 
ticular three-dimensional wave. The present expansion method is essentially a 
recasting of the Stuart-Watson approach, extended to include a class of three- 
dimensional disturbances. Stuart and Watson felt that their method was limited 
to cases where the rate of growth or decay of infinitesimal disturbances is very 
small; a modification suggested in the present work may be more useful in 
handling equilibrium flows. 

In  a two-dimensional linear stability analysis, a key assumption is that the 
perturbation stream function, $-, representing the departure of the flow field from 
the basic steady, parallel laminar flow, can be represented by harmonic com- 
ponents, any one of which is of the form $‘ = 2Re{$(y)exp[iol(~-ct)]}. In  a 
linearized analysis these harmonics do not interact, and hence their behaviour 
can be considered independently. If assumed stream function perturbations of 
this form are substituted into the equations of motion, and only the first-order 
terms retained, one obtains the well-known Orr-Sommerfeld problem for the 
disturbance eigenfunction $( y), 

(1.2) I ((D~--CX~)~-~O~R[(G-~)(D~-~~)-D~U]}~ = 0, 

$ = Dq5 = 0 a t  y = yl, yz. 

Here y1 and yz represent the bounds of the flow, D = d/dy, U( y) is the basic parallel 
flow velocity, and R is the flow Reynolds number (Lin 1955). The complex 
constant c = c, + ici becomes the eigenvalue of the problem; c, represents the 
speed a t  which a wave propagates downstream,? and ci characterizes the rate at 
which the disturbance grows or decays in time.$ The shape of the disturbance is 
determined by the eigenfunction &y), which in turn depends on the prescribed 
values of the wave-number (a) and R. 

In  a non-linear analysis one is led naturally to expanding the stream function 
in terms of harmonics of the basic Orr-Sommerfeld wave, but this must be done 
with some caution. The non-linearity can be expected to have three important 
effects on the motion. First, interaction of the basic wave with itself produces a 
mean ‘Reynolds stress ’, which in turn distorts the mean velocity field. Secondly, 

t Here we consider real 01 only. 
$ UCf = do). 
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the amplitude of an unstable disturbance grows until the mean field has again 
become stable, and in a sense the non-linearity therefore limits the ultimate 
amplitude. Thirdly, it  may be expected that the non-linearity will modify the 
wave speed. Any expansion or perturbation method which is to be successful 
must allow for all three of these effects, and in particular for the dependence of 
the wave speed on amplitude. The approach of Stuart and Watson does this, but 
in a somewhat disguised way. An intent of the present formalism is to bring this 
third effect more clearly into view. 

w 
L'wll 

FIGURE 2. Co-ordinates and normalization for the two problems. R = Um8/v, y = 3'18. 
Dimensionless velocity profile : u = s( 1 - y2) + u,y, u, = U,,lUWZ. 

The expansion formalism will be developed in a general way; we have carried 
out the detailed calculations for plane Poiseuille flow, and for a combination of 
plane Poiseuille and plane Couette flow. The latter affords a unique opportunity 
to examine the finite-amplitude stability of a flow which is stable at all Reynolds 
numbers to infinitesimal disturbances. 

The co-ordinate system and non-dimensionalization scheme appropriate in 
these two problems are indicated in figure 2. Note that the bulk average velocity 
has been used in the normalization, rather than the centre-line velocity used by 
Lin (1955) and others. This choice permits the total flow to be maintained con- 
stant in the non-linear problem. 

2. The expansion formalism 
We begin with the Navier-Stokes equations in a suitably normalized form; 

using the usual subscript summation convention, they are 

Momentum ( 2 . l a )  

Continuity au,jax, = o. ( 2 . l b )  

The variables are presumed to be normalized on suitable characteristic lengths 
and velocities, which remain constant in time (see figure 2) .  
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In  a linearized analysis of three-dimensional disturbances we would assume 
velocity perturbations of the form 

u; = hi(xz) exp [i(ax, +Px3 + wt)] exp (at) 

and w - ia would emerge as the (complex) eigenvalue. The ferm exp (at) would 
represent the disturbance amplitude, and the stability would be determined by 
the sign of a. In  the non-linear analysis we seek a solution in terms of this basic 
wave and its harmonics, and hence an initial transformation of variables is 
suggested. We put 

0 = a:x1+px3+wt, w = @ ( A ) ,  A = A(t),  y = zZ. (2.2) 

The constants a: and j9 represent the streamwise (xl) and transverse (x3) wave- 
numbers, and w is the frequency of the basic wave. Note that we let this frequency 
depend upon the amplitude A(t) ,  which remains to be defined in some suitable 
manner. 

If we were considering two-dimensional motions, the transformation to 
(0, A ,  y)-space would leave the number of independent variables unchanged; 
since time appears in two places in the new variables, the transformation is 
essentially an application of the ‘method of two times ’. When three-dimensional 
motions are considered, the transformation reduces the number of independent 
variables from four to three, and in a sense is analogous to the Squire trans- 
formation of linearized stability theory (cf. Lin 1955). 

In  terms of the new variables, (2.1) becomes 

Momentum 

Continuity (2.3b) 

Note that we seek solutions in terms of the instantaneous position in the cycle of 
the basic wave (O), the amplitude of the fluctuations (A) ,  and the distance from 
the wall ( y ) .  

The form of (2.3 b )  suggests that we represent the problem in terms of a stream 
function, $, defined by 

a$lay = aUl +pu3, akpe = - uz. (2.4) 

Now, ifwe multiply the u1 momentum equation by a, the u3 momentum equation 
by p ,  and add, an equation involving only $ andp is obtained. The us momentum 
equation may likewise be expressed in terms of $ andp, and hence by appropriate 
cross-differentiation and combination p can be eliminated. We thereby obtain a 
fourth-order equation for $, 
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where for brevity we put 
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g = a2+1ay2 + K z ( a 2 @ / ~ ) ,  K2 = a2 -I- p. (2.5b,c) 

Note the similarity of (2.5) and the vorticity equation for two-dimensional 
motions. 

The three-dimensional motion would appear as a wave running obliquely to 
the main flow direction at an angle tan-l (PIE).  The stream function represents 
the motion in planes which are perpendicular to the walls and aligned with the 
direction of propagation of this basic wave, and 5 is proportional to the vorticity 
of this motion. 

For the combined flow, the boundary conditions on @ are 
akjae = 0, a@pg = at y = 1, (2.5~3) 

@periodic in 0 with period 2n. As we shall shortly see, an initial condition is not 
necessary for the investigation of non-linear stability. The transformations above, 
which constitute some of the main differences from the Stuart-Watson formalism, 
have reduced the number of independent variables from four to one; but the 
most important gain is that the eigenvalue w now appears explicitly in the 
differential equation, in a place where it can be expanded along with @ in the 
formal treatment. 

We next expand the stream function in terms of its harmonic components. 
Using the superscript summation convention (appendix A), we put 

@(A,y, 8)  = Y(k)(A,y)eike+~(k)(A,y)e-ike. (2.6) 
Note that the convention requires summation over all positive integers k ;  the 
tilde denotes a complex conjugate. Substituting into (2.5),  and separating out 
the coefficients of like exponentials, we obtain an infinite set of coupled non- 
linear partial differential equations for the harmonic amplitudes. The coefficient 
of exp ( ike )  yields, without approximation,? 

where Skj=O if k + j ,  akj = 1 if k = j ,  and 
Zk) = [(a2/ay2) - k2/c2] Yfp(k). (2.7b) 

The boundary conditions (2.5d) then give 

Y k ]  = aY[kl/ay = 0 at y = y1,y2. ( 2 . 7 ~ )  

The non-linearity and coupling of this infinite set makes its solution difficult. 
However, if the amplitude of the wave is small we can seek a solution as a power 

f The terms are summed over the repeated superscript j, for all values of j for which 
both superscripts 2 0. 



Finite-amplitude instability of parallel shear $ows 471 

series in the amplitude, A, and thereby obtain sufficient decoupling that a 
sequential solution becomes possible. We shall require the solution for infinitesi- 
mal amplitude to reduce to the Orr-Sommerfeld wave, and the solution for zero 
amplitude to reduce to the basic laminar flow. Hence the O(A) terms must 
represent the Orr-Sommerfeld fundamental and the O( 1) terms the laminar flow. 
Upon further consideration of the non-linear interaction, we see that the O(A2) 
terms involve the second harmonic (k = 2) and additional mean terms (k = 0 ) ,  
both generated by interaction of the fundamental with itself. These in turn 
interact with the fundamental to produce O(A3) terms, containing the third 
harmonic (k = 3), and strengthening the fundamental (k = 1). These considera- 
tions suggest that we seek a solution in the form 

Y(k)(A,y) = A"#"n)(y). (2.8) 

Note that, under the superscript summation convention, (2.8) represents a sum 
over all n >, k. Hence Yk) contains no terms of order less than Ak, and it is this 
feature which will decouple the equations for q5(k;n) to the point where they can 
be solved sequentially. 

We must next decide how to handle the term dA/d t .  Since we have assumed a 
power series expansion in A for Y(k), and since we want the amplitude for in- 
finitesimal A to behave as in linear theory (exponentially), we put 

The a(") are constants which must be determined; do) emerges as an eigenvalue 
from the linearized analysis, a(l) will turn out to be zero, and d2) becomes the 
centre of interest in the non-linear problem. If the flow is neutrally stable to 
infinitesimal disturbances, then a(O) = 0, and a(2) consequently determines whether 
a weak disturbance will grow or decay. We shall return to this important equa- 
tion shortly. 

A-l dA/dt = a(O) + Ad1) + A2a(2) + . . . = And"). (2.9) 

Finally, we represent the term involving w by a power series in A, 

(2.10) 

This is essentially a Poinear6 eigenvalue stretching, in terms of undetermined 
constants b(n). Note that b(%) represents the O ( A m )  contribution to the frequency 
of an equilibrium motion (dA/dt = 0); b(O) will emerge as an eigenvalue of the 
linearized theory, b(l) will turn out to be zero, and consequently b(2) will reflect the 
change in oscillation frequency by the non-linearity. With these two expansions, 
a set of sequentially coupled ordinary differential equations for the # k ;  m) will be 
obtained. These will involve the afn) and b(%), which must be determined in some 
appropriate manner. Once these are found, we can return to (2.9) and (2.10) to 
determine the amplitude and oscillation frequency as functions of time. 

Substituting (2.8)-(2.10) into (2.7), and collecting the terms of various orders, 
we obtain an infinite set of equations for the $(k;n). The coefficient of An yields 

1 17LCG(?t-m))Z(k;m)+b(n-m)ikx(k;m)+ [1/(1 + akO)] { D ~ ( k - j : n - m ) [ i j z ( j ; m )  

+D~(j;nim)[i(k+j)z(k+j;m)]  +B#k+j;n-m)[ - i j $ j ; m ) ] -  [i(k-j)#k-j;n-m)] 

1 &(j;m)- [ _~j~((j:n-m)]DZ(lc+j;m)_ [ i ( k + j ) ~ ( k + + j ; n - m ) ] D z " ( j ; m )  

- &-1(D2 - j&2) z(k; n) = 0 (2.11a) 



472 

where D = d/dy,  and 
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~ ( k ;  n) = ( 0 2  - kZK2) p; n). (2.11 b )  

We next collect the terms involving q S k l n ) ;  the superscript convention is particu- 
larly helpful in factoring these out of the summed products. In  addition, the basic 
laminar flow zC(y) which is presumed known is related to q V 0 ; O ) ,  the @Ao) contribu- 
tion to the zeroth harmonic, by 

u = 2a-1D$(o;o) = 2a-1Dqyo;o)* (2.12) 

When the terms involving q Y 0 ; O )  are accordingly represented in terms of U, the 
system (2.11) may be written as 

L kn $[k;n]  = iolC[n-llG&kl + Hkn. (2.13 a) 

Here 8kj is the Kronecker delta; the operator L k ,  is 

L,, = ik[( -i(n/k)dO)+b(O)+azC) (D2-k2/c2) -a(D2G)]- R - 1 ( D 2 - k 2 ~ 2 ) 2 ,  (2.13b) 

and for brevity we have denoted 

iac(n) = - (&I + &(a)), (2.13 c )  

G = ( 0 2  - ~ 2 )  0, (2.13d) 

Hkn = -(~Urn-m1fikb[n-m1)(D2-kzK2)$'k;m)SFkn/(l +8ko),  (2.13e) 

F k n  - - - (.D$[k-j; n-ml) (ij[D2 -jZK2] #j; "1) - (D@j; n--m I )  

(i(k+j) [p- ( ,++ j )2K2]$ lk+ i ;ml )  - ( D p + j ; n - m l ) (  -+j[D2-j2K2]#j:ml) 

+ ( i ( k  -j) $lk-j;n-ml ) ( D [ p  -jZK2] p ; n z l )  + ( - ij$j; n-ml 1 
x (O[D2- (k+j)2~2]$[k+j:'d) + ( i ( k + j )  $k+j;n-ml) (D[Dz-j2~2]$[j:m]). 

(2.13f 1 

a t  y = y1, y2. (2.13g) 

The boundary conditions become 
p ; n I  == D$[k;121 = 0 

When these conditions are applied with k = 0, the total mean flow will be held 
constant, as we have specified. 

Observing that the sums on the right-hand side of ( 2 . 1 3 ~ ~ )  are empty for 
k = n = 1, we find the problem for $ ( l i 1 )  as 

{(a(0)+ib(o)+iau)(D2-~2) -ia(D%) - R-1(D2-~2)2}$(1;1) = 0, ( 2 . 1 4 ~ )  

($1; 1) = D p :  1) = 0 a t  Y = Y l t  Y2.  (2.14b) 

For two-dimensional motions, where K = a, (2.14) reduces to the Orr-Sommerfeld 
problem (1.2) with ac = - b(O) + ia(0). For three-dimensional motions, it  is also the 
same eigenvalue problem as posed in a linear stability analysis. Thus, if 
c(a, K ,  R )  = d o )  is the eigenvalue from the linear treatment, 

b(O) = - ac, and do) = mi. (2.15) 

The shape of the eigenfunction q5(l;l)(y) is fixed by (2.14), but not its amplitude. 
If we define A in some particular manner, this definition will fix the amplitude of 
qP;l), apart from a constant of modulus unity. An alternative approach is to 
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arbitrarily normalize $(1;1) in some manner, and this will in turn define A im- 
plicitly. In the plane Poiseuille flow problem the latter choice is more convenient. 

For plane Poiseuille flow, the mean velocity profile is? 

(2.16) 

The evenness of this profile and of the operators in (2.14a) permits separation of 
the eigenfunctions into a family of even and a family of odd functions (cf. Lin 
1955). Following the normalization of Thomas (1953), we set 

$( l : l ) (O)  = 1 for even modes, (2.17 a) 

Dq5(1;1) = 1 for odd modes. (3.17 b) 

With these normalizing conditions, it  is only a matter of numerics to determine 
the eigenfunction and eigenvalue c. 

Moving on to the higher-order problems, we see that (2.13) is sequentially 
solvable. With known, we can calculate the right-hand sides in the equations 
for q5(0;2) and q5(2; 2), which then become inhomogeneous linear equations for these 
functions. We can continue the calculation, going next to n = 3, etc. provided 
that the constants c(n) can be determined in some appropriate manner along the 
way. We shall discuss this shortly. 

At this point it seems desirable to make a comparison of the present expansion 
method with that of Stuart (1960a) and Watson (1960). In  the present approach 
the constants a(") and b(") are real, and related directly to Watson's complex 
constants a,, of which the most important is a2. The highest harmonic contri- 
buting to terms of order A", denoted q5(n;n) in the present paper, is proportional 
to the functions en used by Watson. The distortion of the mean velocity field, 
here described by the terms was represented by separate functions, fn, in 
the Stuart-Watson formalism. Finally, whereas the present amplitude A is real, 
Stuart and Watson incorporate the temporal oscillation into their amplitude 
function A ,  and hence were led to working with complex amplitudes. A com- 
parison between the two formalisms is given in table 1. An advantage of the 
present approach is that it involves fewer kinds of functions, and these are all 
described by equations of the same form. This permits a relatively simple com- 
puterization of the problem. The emergence of the perturbations in the wave 
speed, as reflected in the W), is somewhat simpler here. (Compare with the 
development leading to the last equation on p. 384 of Watson's 1960 paper.) It 
is interesting to see that the same formalism and virtually the same equations 
can be applied to three-dimensional disturbances of a particular yet important 
class. 

We now turn to the question of evaluation of the dn). The method which we 
shall employ for plane Poiseuille flow is essentially that of Stuart and Watson, 
which is appropriate when lcil from the linearized treatment is small. An alterna- 
tive method for the special case of equilibrium flows will also be suggested. 

t The # results from the normalization on the mixed mean velocity. 
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3. Evaluation of the dn) when lcil is small 
Consider a general problem involving an nth order inhomogeneous linear 

differential equation, for which solutions are sought satisfying a set of n homo- 
geneous boundary conditions; we represent this problem symbolically by 

Ln# = Af-g, ( 3 . 1 ~ )  

{LYiq5 = 0) at y1 or y z  (i = 1, 2 ,..., n). ( 3 . l b )  

Stuart-Watson Present 
notation? equivalence 

A 

a@") + ib(2") 

- - u 
I4 
u, 
an 
f n  Re {2a-1D5br0;2x1} 
$n 

+nln 

a-14 (n; n )  

a-l#(n: zm+n) 

t Stuart and Watson's equations are given for two-dimensional disturbances only. 

TABLE 1. Comparison with the Stuart-Watson expansion. 

As long as there are no non-trivial solutions to the associated homogeneous 

Lnw = 0 ,  ( 3 . 2 ~ )  
problem, 

{giw = 0}  at y1 or yz (i = 1, 2 ,..., n), ( 3 . 2 b )  

the solution to (3.1) will exist and be unique. However, if eigensolutions to (3 .2 )  
exist, solutions to (3.1) can be found only for particular values of the parameter A. 
These values may be determined with the aid of the adjoint function. 

Suppose that i t  is possible to define an adjoint problem, where the adjoint 
differential operator L" and the adjoint boundary conditions 2 P  are such that, 
if u and v are any two functions satisfying 

{Yiu = O } ,  {9,*v = O}, (i = I ,  2 ,  ..., n) (3 .3a ,  b )  

(but not necessariIy satisfying either of the differentia1 equations), the operators 
are such that 

SyU.uL:Z'dy = vLnudy. (3.3c) Jv: 
The adjoint problem can be identified by integration by parts and will possess 
non-trivial solutions only if ( 3 . 2 )  does likewise. 

Now, define an adjoint function CD satisfying 

Lz<D = 0, {LY:(s = 0} a t  y1 or yz (i = I, 2 ,..., n). (3-4) 

Then, multiplying (3.1 a) by a, and integrating, using the fact that (s is to satisfy 
( 3 . l b ) ,  we have 
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Of course, this is only meaningful if the adjoint exists, which will be the case only 
when (3.2) possesses eigensolutions. When this is the case, the parameter h must 
be 

Only with this choice of h can the solution to the inhomogeneous problem be 
found; but this solution is not unique, for we can always add a multiple of the 
eigensolution w. 

Returning to (2.13a), we see that it is not likely that any of the associated 
homogeneous problems (other than that for $(1;1)) will have non-trivial solutions, 
since for k and n other than 1 the operator Lk, differs from L,,. However, in the 
special case where a(O) = 0, corresponding to ci = 0, the operators L,, are all 
identical with L,,, and the boundary conditions are identical, and consequently 
the associated homogeneous problem for $[l;nl would possess non-trivial solu- 
tions. Thus when ci from the linear theory is exactly zero the higher-order con- 
stants c[ml must be determined from an equation of the form of (3.5). For points 
away from the linear neutral curve ( IciI =+ 0) the constants cLn1 could in principle 
be selected arbitrarily. However, practical difficulties would arise if ci is very 
small, unless we retain the same scheme for picking the dnl. In  order to make the 
solution continuous along a line passing through the neutral curve, it is probably 
desirable to employ this technique for all small )cil. A method which may lead 
to more rapid convergence when lcil is not small is suggested in $4. 

Integrating (2.14~1,) by parts, the adjoint problem can be developed as (Stuart 
l g60a)  {i,(U - d o ) )  ( 0 2  - K2)  + 2ia(DE) D - R-l(D2 - K”,”} @ = 0, (3.6a) 

@ = D@ = 0 at y = yl, y2. (3.6b) 

Then, once the adjoint has been found, the cInl may be found from (see 2.13) 

This can be done prior to the calculation of the harmonic contributions of order 
An. Except for the case ci = 0 the $(l;n) will be unique. For the special case 
ci = 0 the arbitrary multiple of $(l; l) can be varied by redefining the amplitude A .  

An important observation is that the constants c(n) for odd n vanish, and thus 
are zero. By inspecting (2.13e) it  may be seen that H,, = 0, and will be zero, 
except for the special case ci = 0, in which $(I;@ could be a multiple of qW1); but 
we choose this multiple to be zero. Then, Ho3 and H23 both vanish, and hence 
these functions must also be zero. Following this line of inspection, we learn that 
the c(n) must vanish for odd n, and the functions Hkn and $@;n) vanish if k + n is 
odd. Thus, the remaining non-zero functions are those shown in table 2. 

A physical interpretation of interactions leading to retention of these functions 
is also of interest. Since the non-linear interaction terms are quadratic, the 
fundamental interacts with itself to produce the zeroth and second harmonics,? 
both of order A2. The q S k i 3 )  terms come from the interaction of the qW2) terms 
with $(1;1), which produces a contribution to the fundamental of order A3 as well 

t By nth ‘harmonic’ we mean terms proportional to exp ( h e ) .  
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as the third harmonic. The higher-order functions are formed in more complicated 
ways; for example, qW4) arises because of interaction of qW1) with q W 3 )  and 
4 ( 3 ; 3 ) ,  plus interaction of q5(o;2) with In general, the function $ k ; n )  and the 
constant c(n) depend only on those functions q5(j;m) for which j + m < k: + n. 

... 
Table 2 .  Non-zero functions. 

A non-linear analysis when ci = 0 is particularly of interest, for it will reveal 
whether disturbances which are neutrally stable if infinitesimal will grow or 
decay if their amplitude is finite. In  the Poiseuille flow case to be considered 
shortly this is the question of prime concern. However, in Couette flow which 
appears to be stable to infinitesimal disturbances, the question arises as to 
whether or not finite amplitude motions might be unstable. Application of the 
expansion formalism in this type of problem requires a method for selection of 
the constants c(n) when lcil is not small, and one such method will now be sug- 
gested. 

4. Modified formulation for equilibrium flows 
The special case of equilibrium flows ( d A / d t  = 0) can be handled in a somewhat 

different manner. While the expansion methods of the previous section in prin- 
ciple include equilibrium flows, a direct attack on these flows, in which d A / d t  is 
assumed to be zero from the start, may lead to more rapidly convergent series, 
and in addition is conceptually somewhat more satisfying than the apparently 
arbitrary choosing of the dn) which seems possible when ci + 0. 

Returning to (2 .5 ) ,  and setting dA/d t  = 0, the resulting problem 

( 4 . l a )  

a$/aO = a+/ay = 0 at y = & 1 (Poiseuille flow), ( 4 . l b )  

can be viewed as a non-linear eigenvalue problem with w as the eigenvalue. The 
harmonic expansion of $ again leads to (2.7), with the dA/dt  terms missing. To 
this point we presume that w is real. However, in order to obtain a solution it is 
convenient to set a mathematical problem, based on (2.7), in which w is allowed 
to  be complex. This permits an expansion in powers of the amplitude, even though 
the physical problem (for real o) may not have eigensolutions for continuously 
varying real A .  

We then assume a power series expansion for w ,  

(4 .2 )  = ~ ( 0 )  + Ad1) + A2~(2) + . . . = A"&), 
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where now the w(n) can be complex. If we again use (2.8) to expand the harmonic 
amplitudes, we obtain a set of equations similar to (2.13), 

dp k n  p ;  nl = - iw"lL-ll Ga k l +  q c n ,  (4.3a) 

where the operator dpkn is now 

dpkn = ik[(w(O)+ccU)(02-k2K2) - a ( 0 2 G ) ]  - R - 1 ( 0 2 - k 2 K 2 ) 2 ,  (4.3b) 

and % kn - - - i k ~ r n - , 1 ( 0 2 - k k 2 K 2 ) ~ ' k ; n z } + F k n / ( l  +&ko),  (4.3c) 

and Fkn and G are as defined by (2.13d) and (2.13f).  
Note that the problem for k = n = 1 is again the Orr-Sommerfeld problem, 

with a complex do) replacing - ccc. This system can be solved sequentially in the 
manner discussed previously, provided that the constants dn) can be suitably 
determined along the way. Now, since the operators dp,, are all identical with 
dp,,, the complementary equations for qV1;n) will all possess eigensolutions, and 
consequently the dn) must be selected so that the adjoint orthogonality condition 
is satisfied. Hence, the dn) must be chosen as 

idn-l1 = jr qn O dy/IU: GO dy. (4.4) 

Having found all the dn) for the mathematical problem in this manner, the 
solutions of the physical problem can be extracted by selecting the values of A 
for which w is real. These are given by the roots of 

Anwin) = 0. (4.5) 

By examining the harmonic interactions, it  can again be reasoned that the only 
contributing functions are those shown in table 2, and that the w(n) for odd n are 
zero. Hence determination of d2) in this manner would allow estimation of the 
lowest eigenamplitude of the finite-amplitude equilibrium wave problem. 

The modified formulation may be preferable for equilibrium, but it does not 
provide information relative to the stability of the flows. However, considering 
the phase plane diagrams (figure l), we can argue that if ci < 0 in the linearized 
analysis, so that the flow is stable to infinitesimal disturbances of the form in 
question, then the first equilibrium flow will be an zcnstuble equilibrium, and the 
lowest root of (4.5) the critical amplitude. Conversely, if ci > 0, so that infinitesi- 
mal disturbances grow in time, the first root of (4.5) would be the equilibriwrn 
amplitude. Hence, in problems where the equilibrium motion is of primary 
interest the alternative method can be used, and the meaning of the roots of (4.5) 
inferred in this manner. 

5. Results for plane Poiseuille flow 
The problem as formulated in $5 2 and 3 have been applied to the case of plane 

Poiseuille flow. We consider the eigenmode which is unstable at the lowest 
Reynolds number, which appears to be the euen mode treated asymptotically by 
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Lin (1955). The conditions at y = - 1 may therefore be replaced by boundary 
conditions at y = 0. For the fundamental and adjoint these become 

D#l;l) = 0 3  @ (1;U = 0 at y = 0, ( 5 . 1 ~ ~ )  

D @ = D 3 @ = 0  at y = O .  (5 . lb )  

Now, considering the nature of the non-linear interaction terms, it is readily seen 
that the higher functions must be such that 

odd for even n, 

even for odd n, 
$[k;nl is ( 5 . 1 ~ )  

and this provides the central boundary conditions for the higher-order functions. 
The pertinent functions needed for evaluation of d2) for two-dimensional dis- 

turbances have been computed numerically using the techniques described in 
appendix B, and the results are summarized in table 3. It is expected that the 
simplified single-precision methods described therein will be quite useful in 
related stability problems, where numerical difficulties brought about by the 
presence of a critical layer often force one to multiple precision programming. 

R a 
6000 1.097 
5000 1.094 
3848.08t 1.02071 
5000 0.875 
6000 0.823 
4000 1.02071 
3500 1.02071 

C, 

0.3773 
0.3896 
0.39603 
0.3516 
0.3304 
0.3394 
0.4026 

Cf 

0~0000 
0~0000 
0~00000 
0~0000 
0~0000 
0.0005 

- 0.0015 

a'2) 

90-90 
67-35 
19.70 
- 3.268 
- 7.088 
19.89 
22-02 

b(2)  

- 206 
- 172 
- 111 
- 86.0 
- 82.5 
- 113 
- 109 

k ,  
- 5.57 
- 4.62 
- 2.82 
- 2.13 
- 2.04 
- 2.72 
- 3.49 

t Critical point. 

TABLE 3. Summary of results for plane Poiseuille flow. 

k2 k, 
-5.71 193 
-3.97 143 
- 1.79 44.0 
-2.66 - 1.74 
-3.07 -9.06 
- 1.85 44.4 
-1.67 49.2 

Of special interest are the results obtained at the critical point on the (linear) 
neutral stability curve. Here a@)is positive ( + 19.7), indicating that disturbances 
actually grow at the critical Reynolds number for plane Poiseuille flow. The 
functions pertinent to this calculation are shown in figure 3. 

Stuart (1960a) has enumerated the essential physical processes which con- 
tribute to a(,). He shows that a@) can be decomposed into three parts, and 

(5.2) written as 

where k,, k, and kd are as defined by Stuart's equations (6.3)-(6.5). Stuart ob- 
served that these three contributions arise from the following three physical 
processes: (1) the distortion of the mean motion (kl), (2) the generation of the 
harmonic of the fundamental (kz), (3) the distortion of the y-dependence of the 
fundamental ( I G 3 ) .  As Stuart observed, k, describes the change of the flow of 
energy to the disturbance due to distortion of the mean flow by the Reynolds 
stress, and is negative.7 Stuart's (1958) integral method essentially considers 

t For lcil SufXciently small. 

2d2) = k, + k, + k3, 
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Y C  

( 4  
FIGURE 3. Plane Poiseuille flow. R = 3848.08, CI = 1.02071, c = 0.396030. (a) Eigen- 
function at  the critical point. ( b )  Adjoint eigenfunction at  the critical point. (c) Mean 
velocity distortion a t  the critical point. (13) q5(o;z) a t  the critical point. ( e )  q5(z;2)  a t  the 
critical point. 

only k,, and hence would always give a@) < 0, i.e. supercritical equilibrium flows. 
The flow of energy from the fundamental to the second harmonic is described by 
k,, and Stuart (1960~) conjectured that it would be negative. The coefficient k3 
represents the modification of the energy of the fundamental due to distortion of 
its y-shape. The early analysis of Meksyn & Stuart (1951) included processes 1 
and 3 approximately, but did not consider process 2. Stuart has conjectured that 
k,  plays the dominant role in any flow which exhibits finite-amplitude subcritical 
instabilities. 

Returning now to the present calculations, we see that k,  and k, are indeed 
both negative, and that k3 is large and positive a t  the critical point. Thus the 
distortion of the fundamental is indeed responsible for the subcritical instability 
and the absence of Taylor vortex-like finite-amplitude equilibrium motions in 
plane Poiseuille flow. 

In the Stuart (1958) integral calculation, it was assumed that the disturbance 
retains its ‘Orr-Sommerfeld’ shape as its amplitude grows. The amplitude to  
which the disturbance grows was then determined by a balance of the fluctuation 
energy production and dissipation over the entire flow. The present results indi- 
cate that the distortion of the disturbance shape is quite important for this vis- 
cous type of instability. Davey’s (1962) analysis of the growth of Taylor vortices 
in rotating Couette flow indicated that process 1 was the controlling factor; but 

31 Fluid Mech. 27 
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the distortion of the fundamental was found to increase the amplitude of the 
equilibrium disturbance somewhat. It is now clear that one must consider the 
distortion of the fundamental in examining finite-amplitude motions resulting 
from viscous instability. 

In  the analysis of Meksyn & Stuart (1951) the mean velocity field was assumed 
to be distorted by a fluctuation having the shape of the Orr-Sommerfeld eigen- 
function, and the stability of this modified mean field was examined by asymp- 
totic methods. Hence they included the distortion of the mean and the funda- 
mental approximately, but neglected the influence of the second harmonic. In  
order to assess the importance of $(2;2) a calculation was made in which this 
function was arbitrarily set to zero; the following values were obtained: 

1 .  
U 

c = 0.39603, I [k, = +55*0. 

A=O ,-- - 
- I\\- 

- 
Stable 

0- 
103 lo4 1 o5 

R 

FIGURE 4. Qualitative amplitude dependence of the neutral stability curve. 

Thus, total neglect of the second harmonic makes modestly significant changes in 
the results, with d2) being increased by about 30 yo, but the main result, that a(2) 
is positive, as indicated by the simpler analysis, is indeed correct. Davey (1962) 
found that the effect of the second harmonic was much less in the Taylor vortex 
case. 

Calculations of d2) have been carried out at four other points on the neutral 
stability curve, and reveal a surprising result. While a@) appears to be positive 
on the upper branch, it is negative on the lower branch. Hence it would be possible 
t o  have finite-amplitude stable equilibrium motions if the disturbance could be 
kept very ‘pure ’, i.e. if higher wave-number contributions could be suppressed, 
but it is doubtful that this could be done in a practical system. 

Additional calculations were made at  points off of the neutral curve. However, 
the differential equation for qW 2, contains a term 2Ru(O)P, and this term (which 
was neglected in Stuart’s (19604  formulation, but not in Watson’s (1960)) be- 
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comes quite important away from the neutral curve. Hence it is very important 
to know do) very accurately when it is not zero, and it is questionable whether 
this was the case in the present calculations. However, for the points reported in 
table 3, a(O) was sufficiently small and it is felt that the values of d2) obtained are 
reasonably accurate. They show that a(2) is continuous and not rapidly changing 
across the neutral curve, and hence positive values for at2) are expected both inside 
and outside of the neutral curve near the critical point. This further substantiates 
the conclusion that plane Poiseuille flow will exhibit subcritical instabilities, but 
no supercritical equilibrium flows. 

We can estimate the reduction in the critical Reynolds number due to finite- 
amplitude disturbances. The value of the fluctuation intensity a t  the centre-line 
is, t o  order A ,  

ii 

u ' '0 1500 2000 3000 4000 
Rcnt 

FIGURE 5 .  Estimated dependence of critical Reynolds number on turbulence 
intensity for plane Poiseuille flow. 

Inspection of the eigenvalues indicates that aa(O)/aR in the vicinity of the critical 
point is about 0.4 x Using d2) = 20, and setting A2 = - do)/&), and recalling 

- 
( U ~ ~ ) ~ / ~ ( O )  FZ 0-0005(3848 - RCrit)*. (5 .3 )  

This estimate of the critical Reynolds number is shown in figure 5. It appears that 
extremely weak disturbances can substantially reduce the critical Reynolds 
number. Davis & White (1928) found that the critical Reynolds number was 
often as low as 670; according to our estimate, this could be produced by a disturb- 
ance turbulence intensity of approximately 2.5 %, which is not unreasonable. 
The analysis of Meksyn & Stuart (1951) indicated a minimum critical Reynolds 
number of 1930, below which even large-amplitude disturbances could not upset 
the flow. The difficulty of making accurate calculations of a(2) off the neutral curve 
prevents a comparison with this result at  the present time. 

6. Results for Poiseuille-Couette flow 
It is generally accepted that plane Couette flow- is stable to infinitesimal dis- 

turbances at all Reynolds numbers, yet experimental evidence indicates that 
instability does exist for the large Reynolds numbers. It has thus been postulated 

31-2 
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that if finite amplitude disturbances were considered the resulting non-linear 
theory would predict instability. In  order to apply the non-linear theory the 
linear problem must first be solved; thus the problem of plane Couette flow 

UW 

0 
0.0375 
0.075 
0.1125 
0.15 
0,225 
0,300 
0.375 
0.45 
0.48 
0.4Y5 
0.51 
0.51375 
0.515625 
0.5175 
0.519375 
0.52125 
0.523125 
0,5251 
0.526875 
0.527344 
0.5275 
0.527844 

fie, 

3,850 
4,920 
8,380 

11,600 
11,200 

10,900 
10,800 
11,900 

20,200 
15,900 

24,500 
33,600 
37,600 
40,800 
44,300 
48,800 
55,700 
65,100 
84,100 

139,100 
184,600 
213,640 
500,700 

acr 
1.02 
0.929 
0.800 
0.700 
0.650 
0.569 
0.486 
0.380 
0.270 
0.216 
0.181 
0,136 
0.122 
0.113 
0.104 
0.0942 
0,0839 
0,0730 
0.0560 
0.0324 
0.02577 
0.02235 
0.00953 

CCT a(2) 

0.396 19.7 
0.359 38.7 
0.288 59.5 
0,236 26.8 
0,207 26.7 
0.162 77.2 
0-118 173 
0.0704 384 
0,0184 554 

-0.0058 459 
-0.0185 376 
-0.033 283 
-0,036 253 
-0,038 236 
-0.040 224 
-0.041 204 
-0.044 194 
-0,047 187 
-0,0479 168 
-0.0501 178 
-0.0505 203 

-0.0512 460 
-0.051 223 

b(l) 

-111 
-124 
- 195 
- 237 
- 258 
- 300 
- 347 
- 34R 
- 6.3 
124 
158 
153 
142 
135 
127 
115 
103 

87.6 
60.9 
17.4 - 5.3 

- 17.2 
-90 

BU 
1.97 
4.44 
5.49 
6.83 
7.82 
9.85 

13.2 
20.4 
40.5 
62.8 
89.4 

158 
197 
229 
268 
329 
414 
547 
925 

2,500 
4,387 
5,831 

32,000 

h, 
- 2.82 
-2.91 
-3.95 
- 5.06 
- 5.14 
- 5.00 
-5.55 
- 7.02 
- 11.0 
- 15.0 
- 18.7 
- 26.4 
-29.8 
- 32.4 
- 35.3 
- 39.0 
-44.7 
- 52.5 
- 68.0 

-113 
- 150 
- 173 
- 400 

25 
-1.79 
- 3.72 
- 7.67 

-10.1 
-12.0 
- 19.1 
-38.7 
- 110 
- 286 
- 344 
- 376 
- 446 
- 476 
- 502 
- 533 
-569 
- 634 
-725 
- 903 

- 1,447 
- 1,904 
-2,199 
- 5,100 

TABLE 4. Results for combined Poiseuille-Couette flow. 

B3 

44.3 
84.0 

68.8 
70.6 

131 

178 
390 
886 

1,410 

1,150 
1,040 

1,280 

1,010 
1,010 
1,020 
1,020 
1,070 
1,150 
1,310 
1,915 
2,458 
2,819 
6.400 

Critical wave-number (acrit) 

0 0.2 0.4 0.6 0-8 1 *o 1 *2 1-4 
0-6 

0 40 80 120 160 200 240 
Critical Reynolds number (Rcrit x 

FIGURE 6. Critical points for combined Poiseuille-Couette flow. 

remains, since the solutions of the linear problem have not yielded any neutrally 
stable modes. Potter (1966) has studied combinations of plane Poiseuille flow and 
Couette flow and has found that the linear theory yields stability a t  all the 
Reynolds numbers for flows in which the speed of the plates exceeds 53 % of the 
mean through-flow velocity. It is the intent of the present calculation also to 
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approach Couette flow by starting with Poiseuille flow and adding to it compon- 
ents of Couette flow; then with the non-linear theory we can follow the effect of 
a finite (but small) disturbance as the flow becomes more and more stable to 
infinitesimal disturbances. 

The differential equations leading to evaluation of d2) have been solved 
numerically using an extension of the techniques described in appendix B.7 The 
solution for qW1) requires iteration to determine the eigenvalue of the linearized 
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FIGURE 7. Non-linear constants a t  the critical points. PoiseuilleCouette flow. 

stability problem, and the values determined by Potter (1966) using asymptotic 
methods provided useful first approximations. For each value of u, one thereby 
obtains a neutral stability curve, and several were given by Potter. Here we con- 
fined our attention to the critical point a t  which the flow first becomes unstable 
to infinitesimal disturbances. Once the critical point had been determined for a 
given u,, the calculations leading to evaluation of c(2) were completed; the results 
are summarized in table 4. 

The location of the critical point is indicated as a function of u, on figure 6. 
Note that the flow becomes stable to infinitesimal disturbances at all Reynolds 
numbers when u, exceeds 0-528.1 It is the value of a(2) for this case which is of 
chief interest; if it  is positive, the flow is stable to infinitesimal disturbances, but 

t It was necessary to integrate from both, walls and patch in the centre, since the 
eigenfunctions could not be split into even and odd modes. 

$ Potter (1966) obtained a value (based on different normalizations) of 0.700, using 
asymptotic methods. I n  his normalization the value determined ‘exactly’ would be 0.704. 
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unstable to finite disturbances. Indeed, this is the result obtained. A plot of a@’ 
us. u, is shown in figure 7. The calculations also indicate that Ic, dominates a(2) 
over most of the range, and a@) is positive at  the critical point over the entire 
range of u,. 

The eigenfunction q5(1;1)(y) at the critical point for u, = 0.526875 is shown in 
figure 8. The ‘outer viscous layers ’ and ‘inner viscous layer ’ discussed by Lin 
(1955) are also shown. It should be noted that the thicknesses of these layers are 

* - 
2 

I 
I II I I I I I I I I 

-0.8 -0.4 0 +0.4 + 0.8 
Y 

FIGURE 8. Critical eigenfunctions for ?A, = 0.526875. Poiseuille-Couette flow. 

approximately the same as the thicknesses of those of figure 3a. This should be 
the case since, according to Lin, aR is the governing parameter and (aR) is 
approximately constant. The lowest order distortion of the mean, q5(Ot2), is shown 
in figure 9. Note that the net flow is unchanged, which is a constraint in the cal- 
culation. 

These calculations clearly show that the flow remains unstable to finite dis- 
turbances, even when it is stable to infinitesimal disturbances, as has been 
frequently conjectured. 

Most of the work reported in $3 1-5 was done a t  the National Physical Labora- 
tory, Teddington, England, where one of us (W.C.R.) was an NSF-sponsored 
Guest Scientist during 1964-65. The encouragement and most helpful sugges- 
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tions which Dr J. T. Stuart and his associates provided during this period are 
sincerely appreciated. The Poiseuille-Couette problem calculations were carried 
out while M.C.P. attended an NSF RPCT program at Stanford during the 
summer of 1965. A grant from the Stanford Computation Centre made the main 
body of the calculations possible. 
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Appendix A. Superscript summation convention 
A superscript summation convention has been found useful in compacting the 

expression of sums as well as manipulating, rearranging, and extracting terms. 
Broadly speaking, the convention is that the terms are summed over all possible 
(integer) values of repeated superscripts or powers, as in the familiar subscript 
summation convention used in manipulating with Cartesian tensors. Limits are 
placed on the values which an index can assume by punctuation, as indicated 
below: (n) n B 0, 

[n] n B 1, 

{n> n B 2, 

n;m n < m .  
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Negative indices are not permitted, and hence zero is by implication a lower 
bound. The delimiters ( ), [ ] and { ) applied to a multiple superscript act only on 
the indices to the right of the semicolon: 

[n;m] means 0 < n 6 m 2 1. 

Some examples which arise in lion-linear problems are given below. 

Superscript convention Explicit 
m 

€nX(n) I; ,nx(n) 

X(k-n) [nl I; X ( k - n y n )  

ekxV-nl {n) c I; € k X ( k - n ) p  

rL=O 

k 

?&= 1 
Y 

m k - 1  

k = 3  n=2 
Y 

2 I; & ; n - m ) q ( j , m )  J %(j; n-m) (j; m) 

m=O j = O  

n- 1 

m = l  . 

Y 

min (3 
X(k-j;n-m) ( j ; m ) .  2 c Y xCk-9.i n-ml [j; m1 Y 

3 = max (" - ;+m) 

Extraction of highest-order terms is particularly simple, for it merely requires 
change of punctuation: 

z(k-n)y(n) = x(k)Y(0) + X(k-n)y[nl 

= x(k)y(O) + ,(O)y(k) + ~ [ k - n l  [nl. Y 

In  non-linear problems one is often faced with the task of multiplying two 
expansions, and then grouping terms. The convention makes this quite easy: 

enX(n)emy(nz) = p + m  (n) (m) = ekz(k-m) (m). 
X Y  Y 

We see that one merely has to introduce changes of notation in order to regroup 
the terms. 

A particularly important case in the present work is the product of two Fourier 
expansions : 

1 rX(n) ein0 + Z(n) e-inO] [y(m) einaO + g(m) e-imL? 
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Appendix B. Numerical methods for the Poiseuille flow case 
The required numerical calculations can be divided into two natural phases. 

First, the eigenvalues must be determined from a solution to the Orr-Sommerfeld 
problem. These values can then be used in subsequent numerical integration of 
the higher-order differential equations. There are some problems in numerically 
solving the ordinary differential equations when R is large, and the technique 
devised will very likely be useful in future calculations of this sort. The methods 
used for finding the eigenvalues are also of general interest. 

(1)  Numerical solution of the differential equations 
We are faced with the task of solving linear ordinary differential equations of the 
form 

where Li is a second-order operator, and L, is a fourth-order operator. If R were 
of order unity there would be no real problem. However, in the present problem 
R is of the order of lo4, and hence the equation is highly singular. There will be 
two linearly independent solutions of the (homogeneous) equation satisfying the 
two central boundary conditions, and an appropriate linear combination of these 
solutions, plus a particular solution of the inhomogeneous equation, must be 
combined to produce a solution satisfying the two wall boundary conditions. It 
is known that one of the solutions grows very rapidly away from the centre; a 
numerical calculation of this function for R = 6666.67 (corresponding to 
Thomas’s (1953) tabulated results), showed a growth of the order of 1018 from 
the centre to the wall. It is clear that generation of a second solution which is 
independent will be difficult; any slight round-off will in effect throw in some small 
multiple of the growing solution, which will likely dominate the second solution 
by the time the wall is reached. This was indeed observed in an experiment, in 
which an eigenfunction calculation was started at  the centre with ‘inviscid’ 
starting conditions. By the time the wall was reached the solution was, to eight 
digits, a multiple of the growing solution, and in fact was of the order of 1O1O, 
suggesting that initially it was present to the order of one part in 108, the maxi- 
mum accuracy of the machine calculations! 

Of course, the final solution does not exhibit this rapid growth, which means 
that only a very small amount of the growing homogeneous solution is required. 
The problem is to generate numerically a second homogeneous solution which is 
not merely a multiple of the growing homogeneous solution. There are essentially 
two approaches which come to mind. First, one might use multiple precision, 
extending the accuracy of the digital computations to, say, 16 digits. Then, the 
solution can be carried out in two pieces, outwards from the centre, and inwards 
from the wall, and matched somewhere between. This would limit the growth to 
the order of 108 on either side, for which 16 digit computations would suffice. A 
scheme of this type has been successfully employed by Nachtsheim (1964) in 
calculation of the eigenfunctions for plane Poiseuille flow. Using a fifth-order 
Milne predictor-corrector algorithm, and 256 steps, Nachtsheim was able to re- 
produce Thomas’s (1953) eigenfunction very well. A second scheme, used by 

(B 1) LiQ+R-’L,$ =f, 
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Kaplan (1964), involves suppression of the growing solution during the calcula- 
tion of the well-behaved solution. In the interests of using a scheme that would 
readily extend to very high Reynolds numbers, the suppression scheme of Kaplan 
was adopted. 

In the present program the particular solution, the behaved homogeneous 
solution, and the growing homogeneous solution are simultaneously calculated, 
starting with appropriately chosen values at  y = 0. The particular solution and 
the behaved homogeneous solution are started such that a t  y = 0 they represent 
solutions of ‘inviscid ’ problems, and the growing solution is started with magni- 
tude of the order of 10-8 of that for these solutions. If no steps were taken to 
suppress the growing solution from the behaved solutions, they would a t  first 
resemble solutions to the inviscid problems; however, before long the growing 
solution would begin to appear in these solutions, causing them to differ markedly 
from solutions of the inviscid equations. Hence a t  each step in the calculation a 
(small) multiple of the growing solution is subtracted from the behaved solutions; 
the multiple is chosen so as to continually adjust the behaved solutions so that 
they locally nullify the inviscid operators, i.e. hi($) = 0 for the behaved homo- 
geneous so1ution.t In  this manner the growing solution is prevented from ever 
dominating the behaved solutions. When the wall is reached we have in storage 
two linearly independent homogeneous solutions and a (behaved) particular 
solution. These are then combined to satisfy the wall boundary conditions. 

The algorithm employed in the numerical integration is part of a predictor- 
corrector algorithm for fourth-order equations. However, the linearity of the 
equations eliminates the need for a predictor, and hence only the corrector 
equations are required. They are obtained by passing a third-order polynomial 
through $““ at four points, expressing the coefficients in terms of the (known) 
values of the fourth derivative at the three backward points and the single for- 
ward point. This is then integrated to give #‘‘ a t  the forward point in terms of the 
unknown fourth derivative, again to get $‘I, and so forth. The resulting expres- 
sions for q5 and its derivatives may be written as follows: 

A2 A3 
2 720 

9; = &+&‘A+$$-+- (17&“+ 1204g“-21q511;+4q5~2), 

@; = & + &’A + ~ (38@;” + 17 1&” - 36$y1 + 7#’!’2), 
(B 2 )  

A2 

360 

I A 
24 

qy = qq + - (g$;” + 1 g&“ - 5+y1 + $Y2). 

Here A is the (uniform) mesh size and qjn = $(y,). Note that the last of (B2) is 
the Adams corrector formula for a first-order equation. These expressions are 
substituted into the differential equation, yielding an equation for #Y of the 
form 

A&”+B+R-l(C#;”+D) = P. (B3) 

t A slightly different filter was used inside of the critical layer in the present calculations. 
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This is solved for @;”. For very large 11 the inviscid terms A and B control the 
nature of the solution, and hence the scheme tends to be very stable. A similar 
scheme, based on a two-point fit, is used to start the calculation. 

The eigenfunction given by Thomas (1953) at R = 6666.67t formed a point o 
comparison in early calculation experiments. Using 401 net points, Thomas’s 
eigenfunction could be reproduced to better than five decimal places. Subse- 
quently the program was modified to employ a smaller mesh size within the 
critical layer, and it was found that equally satisfactory results could be obtained 
using A = 0-005 in the central region and A = 0.0025 within the critical layer. A 
calculation made using half as many points also seemed to be quite satisfactory 
as far as the eigenfunction was concerned, but small differences in the higher- 
order functions were evident. 

The final calculations were made using A = 0.005 in the central region, and 
A = 0,0025 within the critical layer. Values of the functions were retained a t  201 
equally spaced points (corresponding to A = 0.005) in the range 0 < y < 1 for 
use in the higher-order calculations. 

The heart of the program was a subroutine for integrating a generalized in- 
homogeneous Orr-Sommerfeld equation or its homogeneous adjoint equation. 
A second subroutine provides for automatic collection of terms and calculation of 
a generalized Hkn. Given the eigenvalue, repeated calls of these subroutines, plus 
numerical integration, were all that were required. Integrals were calculated 
using a five-point scheme. All programming was done in FORTRAN-IV, which 
provides for automatic complex arithmetic, and the calculations were executed 
on an IBM 7090. Slightly over one minute is required for computation of a@) and 
the associated functions if the eigenvalue is initially known. 

Although the functions qW1), q 5 ( O i 2 )  and $(2;2), and the adjoint, could be cal- 
culated in this manner, the accuracy in 5W3) was relatively poor. This is because 
the inhomogeneous term H13 is highly oscillatory, especially within the critical 
layer, and the 201 points at which values obtained were evidently insufficient to 
allow accurate calculation of It might be thought that the calculation of 
d2) would be plagued by this same difficulty, but this did not appear t o  be the 
case. Calculations carried out with 101 retention points, using the same integra- 
tion steps as in the 201 point case, give a d2) that was only a few per cent different 
from that obtained in the 201 point case. Doubling the number of integration 
steps, maintaining 201 retention points, made less than a 0.1 yo change in d2). 
Hence the accuracies of d2) and the functions involved in its evaluation are con- 
sidered quite satisfactory. Since qS1; 3, could not be calculated with sufficient 
accuracy, k3 was obtained by subtraction using (5.2). 

(2) Eigenvalue determination 

An iterative scheme was developed for determination of the eigenvalues, using 
the differential equation integrator described above. The scheme has several 
options, listed below: (1) find c for R,a fixed, (2) find R,a for c fixed (ci = 0), 

t Note that R in Thomas’s paper is 8 that in the present work, his c is 8 times the con- 
jugate of our c, and his Q corresponds to d; here, owing to differences in normalization and 
harmonic representation. 
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(3) find a, c, for R fixed (ci = 0). Options ( 2 )  and (3) are useful in establishing the 
neutral curve, and employ an interesting dual adjustment scheme, which we now 
describe. 

Using the equation integrating scheme, we can construct a solution for given 
a, R and c, which satisfies the central boundary conditions and one of the wall 
conditions. The game is to adjust the parameters so that both wall conditions are 
satisfied. Let T denote the ‘test function’, which should be zero. In  the present 
case this was chosen as DqW1)(1). For option ( 2 ) ,  T = T(a,  c,). With three suc- 
cessive equation solutions in the vicinity of a, c,, we establish a l l / &  and alllac,. 
Then, the value of T a t  the new trial point is approximated by 

o = ~ ( a  +A&, C, + ~ c , )  = T, + (aT/aa),aa + ( a ~ / a c , ) , ~ c , .  

This is used to correct a and R. 
When the asymptotic results of Lin (1955) were used as starting values, satis- 

factory convergence was obtained in three or four passes, and the eigenvalue 
could be established in slightly more than 1 minute. A similar scheme was used 
in option (3), and a direct Newton method employed for option (1). The critical 
point was calculated using option (2), holding c, a t  the value given by Nachtsheim 
(1964). This slight trimming was necessary because the test function is quite 
sensitive to the values of c, a and R, and Nachtsheim reported only four significant 
figures. 
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